Quarta-Feira, 24 de Abril de 2025
Chapadão do Sul / MS

Carregando...

Costa Rica / MS

Carregando...

Cassilândia / MS

Carregando...

Chapadão do Céu / GO

Carregando...

Camapuã / MS

Carregando...

17.08.2017 às 07:26

A matemática está em tudo: comece olhando para sua xícara de café

O café da manhã dos matemáticos pode ser bem mais complexo do que para os demais habitantes do planeta. Quando os matemáticos enchem suas xícaras de café e pegam o açúcar, eles reconhecem a mágica que ocorre durante o tempo em que a colher gira para misturar aquelas substâncias. Mas que beleza oculta os matemáticos veem na transformação do líquido amargo em doce?

Em primeiro lugar, eles sabem o quanto o caos é importante nesse processo e balançam a colher de forma desordenada. Se a mexessem em círculos, com movimentos periódicos, o açúcar se acumularia nas beiradas da xícara, onde o líquido se movimenta mais devagar. “O caos é usado em muitas aplicações práticas para fazer misturas de maneira a homogeneizar as substâncias”, conta o professor aposentado Hildebrando Rodrigues, do Instituto de Ciências Matemáticas e de Computação (ICMC) da USP, em São Carlos.

Ele explica que, ao promover o caos com a colher, possibilitamos que as partículas de açúcar se afastem rapidamente umas das outras e se mesclem com o líquido. “Essa é uma característica muito importante do caos: fazer o que está próximo se distanciar rapidamente”, revela o professor. Para analisar o fenômeno matematicamente, precisamos transformar o café e o açúcar em coordenadas: imagine, então, que o café se torna um “x” e o açúcar um “y”. A compreensão dessa mistura de “x” e “y” só ocorre se levarmos em conta os movimentos com eles ao longo do tempo em que a colher promove o deslocamento dessas duas coordenadas.

Bem-vindo ao sistema dinâmico da xícara de café! Observe o açúcar se misturando. Trata-se de um fenômeno em que há uma variação e você já consegue imaginar que esse microssistema funciona de forma similar a muitos outros. Olhe agora para o céu e veja os corpos celestes descrevendo suas órbitas: eles também se movem ao longo do tempo. E tudo que apresenta variação pode ser traduzido matematicamente por uma equação diferencial.

“No embrião do estudo das equações diferenciais está a obra de Galileu Galilei ao pesquisar o movimento dos astros”, conta Plácido Táboas, outro professor aposentado do ICMC. Ele lembra que no tempo de Galileu ainda não existia o termo “equações diferenciais” nem “cálculo diferencial”, mas faz uma ressalva: “Você tem que olhar a obra do homem no seu tempo. E no tempo dele, Galileu foi genial”.

Precursor da física experimental e teórica, Galileu deu os primeiros passos rumo à compreensão dos sistemas dinâmicos ao pesquisar a trajetória dos planetas. De lá para cá, muita coisa mudou. Hoje, a maioria dos modelos matemáticos utilizados na física, na engenharia, na química, na biologia e nos mercados financeiros envolve equações diferenciais. Elas são a base da dinâmica de Isaac Newton e estão presentes nas equações de Albert Einstein que descrevem a força da gravidade.

As equações diferenciais permeiam nosso cotidiano e são aplicadas a problemas tão diversos e fascinantes que vão muito além da mistura de café e açúcar. Foram elas que ajudaram a descobrir por que algumas pontes caem, quais obras de arte são falsas, a diagnosticar doenças, a acompanhar a evolução de um tumor cancerígeno e o crescimento de populações.

Ao vislumbrar essas diferentes aplicações, você verá que não é preciso fazer contas nem resolver equações para entender que a matemática está presente em tudo. É claro que talvez poucos sejamos capazes de resolver equações diferenciais, mas com certeza todos podemos reconhecer sua importância ao compreender para que elas servem. Basta pensar em tudo o que existe na vida que varia com o tempo e você começará a enxergar equações diferenciais por toda parte.

COMENTÁRIOS

VOLTAR